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We study the isothermal autocatalytic system, A+nB — (n+1) B, where n = 1 or 2
for quadratic or cubic autocatalysis respectively. In addition, we allow the chemical
species, A and B, to have unequal diffusion rates. The propagating reaction—diffusion
waves that may develop from a local initial input of the autocatalyst, B, are
considered in one spatial dimension. We find that travelling wave solutions exist for
all propagation speeds v = v¥, where v is a function of the ratio of the diffusion rates
of the species A and B and represents the minimum propagation speed. It is also
shown that the concentration of the autocatalyst, B, decays exponentially ahead
of the wavefront for quadratic autocatalysis. However, for cubic autocatalysis,
although the concentration of the autocatalyst decays exponentially ahead of the
wavefront for travelling waves which propagate at speed v = v¥, this rate of decay
is only algebraic for faster travelling waves with v > »¥. This difference in decay rate
has implications for the selection of the long time wave speed when such travelling
waves are generated from an initial-value problem.
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//ﬂ;ﬂ‘ 1. Introduction

2 In this paper we consider jcwo model, isothermal, .autocatalytic,‘ chemical reaction
S > schemes. The first scheme is based on the quadratic autocatalytic step

8 E A+B—>2B, rate k,ab, (1)
= while the second scheme is based on the cubic autocatalytic step

E 8 A+2B>3B, rate k,ab®. 2)

Here a and b are the concentrations of the reactant, A, and the autocatalyst, B,
respectively, and &, and k, are constant reaction rates. The autocatalytic steps (1)
Phil. Trans. R. Soc. Lond. A (1991) 334, 1-24
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2 J. Billingham and D. J. Needham

and (2) have been used in several successful models of real chemical systems. The
quadratic step (1) arises in models of the Belousov—Zhabotinskii reaction and also
gas-phase, radical chain branching, oxidation reactions, such as the carbon-
monoxide—oxygen, and hydrogen—oxygen systems (Gray et al. 1984 ; Merkin el al.
1985). Almost isothermal flames in the carbon-sulphide—oxygen reaction, which arise
from quadratic branching, can be described in terms of the cubic autocatalytic step
(2) (Voronkov & Semenov 1939). The cubic rate law also provides a good model for
both the iodate—arsenous acid reaction (Saul & Showalter 1984) and hydro-
xylamine-nitrate reaction (Gowland & Stedman 1983). On a theoretical level, Aris
et al. (1988) have shown that the chemically implausible termolecular step can be
replaced by a series of elementary, bimolecular steps which lead to the cubic rate law
(2). Autocatalytic rate laws also arise in enzyme reactions such as glycolysis (Sel’kov
1968).

Observations show that chemical systems for which quadratic or cubic auto-
catalysis forms a key step can support propagating chemical wavefronts, when the
reaction mixture is unstirred (see, for example, Zaikin & Zhabotinskii 1970; Hanna
et al. 1982). These wavefronts, or travelling waves, arise via a combination of reaction
and diffusion. Physically, the typical situation which leads to the development of
travelling waves is that which arises when a quantity of the autocatalyst, B, is
introduced locally into an expanse of the reactant, A, which is initially at uniform
concentration. The developing reaction is often observed to generate wavefronts,
which propagate outward from the initial reaction zone. It is this phenomenon that
we address in the present paper. For analytical convenience, we restrict attention to
the case of one-dimensional slab geometry, with the coordinate ¥ measuring distance.

The equations that govern the reaction and diffusion of the species A and B under
reaction schemes (1) and (2) are

da/0t = D ,(0%a/0x*) —k,, ab™, (3a)
0b/ot = Dy(0%/0x%) + k,, ab™. (3b)

Here D, and Dy are the constant diffusion rates of the reactant, A, and the
autocatalyst, B, respectively, and { is time, Under quadratic autocatalysis n =1,
while for cubic autocatalysis » = 2. The initial conditions to be considered are

a(x,0) = a,, b(x,0)=b,g(x), || <o, (4a)

where g(Z) is a given, non-negative function of z, with a maximum value of unity, and
g(x)—~0 as |x| >00. Here a, and b, are the positive, constant, initial concentration
of A and maximum initial concentration of B respectively. In addition, we have the
boundary conditions

a(x, ) —~a, bxt)—~0, as |z]->oc0. 4b)
It is convenient to introduce dimensionless variables as
a=ala,, p=blay, t=rkyall, x= (k,al/D,)z, (5)

in terms of which equation (3), together with initial and boundary conditions (4),
becomes
Qo /Ot = (0% /0a®) —a i, (6a)
0f/0t = D(0*B/0a?) + ap”, (6b)
Phil. Trans. R. Soc. Lond. A (1991)
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The development of travelling waves. 1. 3

where D = Dy/D, and
a(@,0) =1, B 0)=pgx), [ <o, (Ta)
a(x,t)> 1, plx,t)—~0, as |x]—>00. (70)

The dimensionless parameter g, =b,/a, provides a measure of the maximum
concentration of the initial input of the autocatalyst, while the dimensionless
parameter, D, measures the rate of diffusion of the autocatalyst, B, relative to that
of the reactant, A. In chemical systems that involve reactants of similar molecular
weight it is a reasonable approximation to assume that the diffusion coefficients, D,
and Dy, are equal, which gives D = 1. This simplifying assumption was used by
Billingham & Needham (1990) and Merkin & Needham (1989). However, enzyme
reactions may involve large enzyme molecules and much smaller substrate molecules,
which can lead to significantly different diffusion rates. It is also possible to
immobilize enzymes in a gel or membrane, so that one diffusion coefficient is zero
(see, for example, Kernevez et al. 1979). Equation (6) also arises in epidemiology,
where a represents the number density of healthy individuals and £ the number
density of infected individuals (see, for example, Bailey 1975). Infected individuals
may be significantly more or less mobile than healthy individuals. This situation
again leads to a value for D that can be significantly different from unity. Thus it is
of interest to consider the behaviour of solutions to the initial-value problem (6) and
(7) when D % 1. In this paper we will assume only that D > 0.

An important preliminary to the study of the initial-value problem (6) and (7) is
an investigation of the permanent form travelling wave solutions of equation (6a, b),
which may be generated from the initial-value problem (6) and (7). We study these
in the present paper and to this end we make the following definition.

Definition. A permanent form travelling wave solution of equation (6a, b) is a non-
trivial, non-negative solution that depends only on the single variable z = x—y(f),
where y(f) is the position of the wavefront, and satisfies the conditions &1, #—0
asz—>+o0, and a>a_,, f—f_, as z—> — o0, where a__, f_ are the uniform, non-
negative concentrations behind the wavefront.

2. General properties of travelling wave solutions

The equations which govern permanent form travelling waves are obtained by
looking for a solution of equation (6a, b) in the form a = a(z) and g = f(z) which
becomes

o, +va,—af” =0, (8a)

DB, +vp,+ap” =0, (8b)

where v(t) = dy/dt. However, since a and £ are functions of z alone, equation (8a, b)

shows that the front propagation speed, v, must be constant, after which the

symmetry of the equation shows that we need only consider the case when » > 0. We

now prove four elementary results which concern the travelling wave solutions of
equation (8a, b).

Proposition 2.1. 4 permanent form travelling wave solution of equation (8a, b) has
a>0and >0 for all —oo0 <z < 0.

Proof. Let a(z), B(2) be a permanent form travelling wave solution and suppose that
there exists a z, such that a(z,) = 0. Then, since a(z) is non-negative, we have that

Phil. Trans. R. Soc. Lond. A (1991)
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4 J. Billingham and D. J. Needham

a,(z,) = 0. Moreover, for the given f(z), equation (8a) can be regarded as a second-
order, linear, ordinary differential equation for o(z), which has no singular points for
any — o0 < z <00. Thus any initial value problem for a(z) has a unique solution in
— 0 <z<w (see, for example, Burkhill 1968). Equation (8a) together with the
above homogencous conditions at z, form an initial value problem for a(z), which has
the unique solution a(z) = 0 for — 0 < z <co. However, we must have a1 as z—+00
for a permanent form travelling wave solution. Hence, no such z, exists and o > 0 for
all —o0 <2z <oo0. Following similar arguments, we readily establish the equivalent
results for g. ]

Proposition 2.2. 4 permanent form travelling wave solution of equation (8a, b) has
a0, p->1asz2>—00.

Proof. Let o(z), f(z) be a permanent form travelling wave solution. As z—>—o00,
a->a_, and hence a,,a,, 0. Thus, from equation (8a), we must have that a_, =0
or f_,=0. After integrating equation (8a,b) with respect to z on the range
— 0 <z <o we obtain

f apftdz=v(l—a_,), J aftdz=vp_. (9a, b)
Equation (9a, b) shows that o+ =1,and hencea_, =0, =1ora_,
p_ = 0. However, via (9b) and Proposition 2.1, f__ # 0 and therefore a_,, =0,
f_., = 1 and the proposition is established. O

Proposition 2.3. 4 permanent form travelling wave solution of equation (8a, b) is
strictly monotone increasing in a and strictly monotone decreasing in £, with 0 < a < 1
and 0 < f <1 for —o0 <2z <00.

Proof. Let a(z), f(z) be a permanent form travelling wave solution. Suppose a,(z)
has more than one zero in —oo <z <co. Let 2z, and z,, be two consecutive zeros of
a,(z) with z, <z,,,. Then, using equation (8a) and proposition 2.1, we have that
a,(2,41) > 0and hence a,(z) < Oforallz, <z <z,,,. Thusa,(z,) < 0. However, from
equation (8a) and Proposition 2.1, we obtain a.,(z,,) > 0. This leads to a contradiction
and we conclude that «,(z) has at most one zero for — o0 <z <oo. Suppose now that
a,(z) has exactly one zero in —o0 <z <00 at z = z,. Since a,(z,) = 0, equation (8a)
and Proposition 2.1 shows that a,,(z,) > 0, and hence o,(z) < 0 for all —o0 <z < z,.
Therefore, on integrating o, with respect to z on the range — oo < z < 2%, we obtain,
on using proposition 2.2,

J a,dz = a(z*) <0,

for any —oo <z* <z, which violates Proposition 2.1. Thus we conclude that
a,(z) # 0 for any —oo <z <oo. Also, from proposition 2.2, «->0 as z->—o00 and
a->1 as z—>+00, and so a(z) is strictly monotone increasing, with 0 <a < 1 for
—00 <z <00. A similar argument establishes the analogous result for f(z). O

Proposition 2.4. 4 permanent form travelling wave solution of equation (8a, b) has
a+pE1 for —o0 <z<o0 when D = 1.

Proof. On addition, equation (8a,b) may be integrated once to yield, after
application of the conditions in Proposition 2.2,

(a+p),+va+p)=v+(1=D)p,=Zv for —o0 <z<o00, (10)
Phil. Trans. R. Soc. Lond. A (1991)
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The development of travelling waves. 1. 5

when D £ 1. By integrating this inequality and applying the condition (a+ ) > 1 as
z—>—00, the result is established. O
We also note that equation (10) may be integrated once more to give

o0
f (1—a—ﬂ)dz=1_D, (11)

w v
after applying the appropriate boundary conditions as z—>+oco. Together with
Propositions 2.3 and 2.4, equation (11) shows that, at any D >0, as v—o0,
a+pf->1 uniformly for —oo0 <z <oo. It is now convenient to introduce the
dependent variable, w = f,, and write equations (8b) and (10) as the equivalent
third-order system

a, =v(l—a—p)—Dw, (12a)
p.=w, (12b)
w, =—D"Yaf™ +ow). (12¢)

A permanent form travelling wave solution of equation (8a, b) is equivalent to a
solution of equation (12) in the domain —o0 <z <o0, with a,f > 0 and which
satisfies the conditions

a>1, -0, w—->0 as z->+o00, (13a)
a—=>0, -1, w—->0 as z—>—00. (13b)

For each fixed D = 0 this can be thought of as a nonlinear eigenvalue problem, with
the positive propagation speed, v, being the eigenvalue.

From Proposition 2.4 when D =1, a+f =1 and equation (8a, b) reduces to the
single equation

or the equivalent second-order system,
B,=w, w,=—{f"1-=p)+ovw}. (15a, b)

For quadratic autocatalysis, » = 1, equation (14) is the Fisher equation (Fisher
1937), while for cubic autocatalysis, n = 2, equation (14) is the cubic Fisher equation.
On applying a theorem given in Britton (1986) it is readily shown that equation (14)
has permanent form travelling wave solutions for all v = o¥, where v¥€ (0, 2] and
vFe (0, 1]. A phase plane analysis of equation (15) shows that of =2 (see, for
example, Murray 1977) and »f = 1/4/2 (Billingham & Needham 1990). However,
these and other general results on second-order equations, such as (14), are not
applicable to third-order systems, such as (12). Thus to obtain detailed information
about the solutions of the eigenvalue problem posed by (12) and (13) when D # 1, we
must consider the system (12) in the («, £, w) phase space. We address first the case
of quadratic autocatalysis with n = 1.

3. Quadratic autocatalysis, n = 1

When n = 1, equation (12a, b, ¢) becomes

a, =v(l—a—pg)—Dw, (16a)
P =w, (160)
w, =—DYaf+ow). (16¢)

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

\

\

%A

A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
JA
) ¥

A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

6 J. Billingham and D. J. Needham

This system has just two finite equilibrium points in the («, §, w) phase space at
(0, 1, 0) and (1, 0, 0.). Thus a solution of equation (8a, b) which satisfies conditions
(13a, b) is a directed integral path of equation (16a, b, ¢) which connects the point
(0,1, 0) to (1, 0, 0). We begin by examining the local behaviour in the neighbourhood
of the two finite equilibrium points. Linearization of equation (16) about the point
(0, 1, 0) shows that it is a simple equilibrium point with a two-dimensional stable
manifold and a one-dimensional unstable manifold. The eigenvalues and associated
eigenvectors are

A, =—vD e, =(0,—1, —A)%, (17a)
A= =3V (@ +4)+o}, e = (A,(DA,+w), — 1, —Ay)", (170)
Ay = {02+ 4)—0}, €, = (DA, +0), =1, —A,)". (17¢)

Therefore the only integral path which satisfies condition (13b) and has a > 0 as
z——o00 is the unstable manifold of the point (0, 1, 0) in o = 0, which we label S,.
Linearization of equation (16) about the other equilibrium point (1, 0, 0) shows that
it is a simple, stable equilibrium point with eigenvalues and associated eigenvectors
given by

(1,0,0)", (18a)
o ({Dpy v}, —{pg o}, — poipy +o})",  (180)
s ({Dpy+0}, —{py +0}, — paipy +0))". (18¢)
When v < 24/D, the two eigenvalues p, and u, are complex conjugate, and,
sufficiently close to the equilibrium point (1, 0, 0), all solutions are oscillatory and
take both positive and negative values of . However, a permanent form travelling

wave solution must enter the point (1, 0, 0) and remain non-negative, which leads to
the following result.

Py =0, €,
—(1/2D){v/ (v*—4D) + v}, e,
(1/2D){n/ (v®* —4D)—v}, e,

Proposition 3.1. There exist no permanent form travelling wave solutions of equation
(16a, b, ¢) for v < 24/D.

This proposition establishes a necessary condition for the existence of a permanent
form travelling wave solution of equation (16a, b, ¢). The following proposition
establishes the sufficiency of this condition.

Proposition 3.2. 4 wunique permanent form travelling wave solution of equation
(16a, b, c) exists for each v = 2+/D.

Proof. Define the region B by
R={(a,p,w):0a<1,0<<1,—(wp/2D) <w <0}, (19)

An examination of equation (16a, b, ¢) shows that for each v > 24/D, all integral
paths at the faces of R are directed strictly into R, whilst the integral paths at the
edges are directed into or along the surface of B. Under these conditions it is readily
deduced that any integral path which strictly enters R must remain within R.
Moreover, since f, = w < 0 within R, any integral path which starts within R, or
strictly enters I, is monotone decreasing in £ as z increases. However, the integral
path must be bounded below by the edge of R along f = 0. The only remaining
possibility is that the integral path enters the stable equilibrium point at (1,0, 0).
Thus any integral path, which at z = z*, say, is strictly within R, remains within R

Phil. Trans. R. Soc. Lond. A (1991)
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The development of travelling waves. 1. 7

for all z > z* and is asymptotic to the equilibrium point (1, 0, 0) as z—00. Now, via

(17¢), the unstable manifold, S,, of the equilibrium point (0, 1, 0) enters R. Therefore

S, remains within R and connects with the equilibrium point (1,0, 0). This

connection is unique, and must have 0 <a < 1,0 < g < 1 forall —o0 <z <o0. Thus

S, represents a unique, permanent form travelling wave solution and the result is

established. O
Propositions 3.1 and 3.2 may be combined to give the following.

Proposition 3.3. 4 permanent form travelling wave solution of equation (16a, b, ¢)
exists if and only if v = v¥(D) = 24/D and is unique.

Note that this is consistent with the minimum propagation speed for Fisher’s
equation v¥(1) =2, as mentioned in §2. Solutions of equation (16a,b,c) were
obtained numerically via a fourth-order Runge—Kutta method, with initial values of
a and g close to the equilibrium point (0, 1, 0) on the unstable manifold, S,, given by
(17¢). These numerical integrations of equations (16a, b, ¢) verify that £ becomes
negative, and hence that no permanent form travelling wave solution exists if
v < 24/D. Several permanent form travelling wave solutions are shown in figure 1
for various values of v and D, with v = 24/D. We observe that the width of the wave-
front increases with both v and D. The wavefront also becomes more asymmetric as
D0, with £ decaying more rapidly than o as z—>c0. This asymmetry decreases
as v increases for fixed D, as indicated by equation (11). We now examine the
asymptotic form of these travelling wave solutions for both D <1 and D > 1.

D < 1. Equation (16¢) indicates that for D <1 and v > D, w changes rapidly
except where w ~ —af/v, which thus forms a centre manifold for the system of
equation (16), when D < 1. From arbitrary initial conditions w changes rapidly to
reach this centre manifold, with w, of O(D™'), whilst o and § change only at O(D). The
remaining dynamics occur on the centre manifold. We note that the two equilibrium
points at (1, 0, 0) and (0, 1, 0) lie in the centre manifold and thus, at leading order,
the integral path which connects these points and represents the travelling wave
solution will lie entirely in the centre manifold. To analyse the behaviour of this

travelling wave solution we put w = —af/v and substitute into equation (16) to
obtain, at leading order in D,
a, =v(l—a—p), p,=—af/v. (20a, b)

This two-dimensional system has just two finite equilibrium points in the («, #) phase
plane, at (1, 0) and (0, 1). It is readily shown that for each v > 0, there exists a unique
integral path which connects these points in o, § > 0 and represents the leading order
approximation, for D <1, to the travelling wave solution. Of particular interest is
the travelling wave with minimum propagation speed and we continue our analysis
by examining the solutions of equation (20«, b) when v = O(4/D). On linearization
about the equilibrium point (0, 1) we find that, on the unstable manifold, which
forms part of the connecting path, & = O(v) and £ = O(1) as z——co. This suggests
the change of variables o = v4, f =B, where 4, B = 0(1) at least as z——oc0. We
now define region I to be that in which 4, B = O(1). At leading order in v, equation
(20a, b) becomes

,=1—-B, B,=—A4B. (21a,b)

In the (A, B) phase plane, the system (21) has a unique finite equilibrium point at
(0, 1) which is a saddle.

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 1. Graphs of the travelling wave solutions of equations (16), when: (a) D = 0.001,v = 24/D;
(b) D =0.001,v=5+yD; (¢) D=1, v=24/D; (d) D=1, v=5+D; () D =1000, v = 24/D; (f)
D = 1000, v = 54/D.

We require the integral path which has 4 -0, B->1 as z->—00. An examination
of the phase portrait of equation (21a, b) shows that this path is unique, and has
A->00 and B->0 as z->c0. In particular, we have A(z) ~ z+o(z7Y), B(z) ~ e3¢+ ag
z—>00. Since o = vA ~ vz as z->00, this approximation becomes non-uniform when
z = O(w™) with a = O(1), # = O(e™V*"). Thus we need to introduce a further region
with z > 1, which we label region II, to complete the solution. In region II we let
n=wvz and f= e/ with 5, ¢ of O(1) as v->0. On substituting into (20), the
leading order equations may be integrated immediately to give the solution, which
matches as -0 with the solution in region I, as

a=1—e", pf=exp{—n—1+e7")/v*.
Phil. Trans. R. Soc. Lond. A (1991)
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Figure 2. A graph of the travelling wave solution of equation (20) when » = 0.005.

This solution has a—~>1, f—0 as y-—>00, which now satisfies condition (13a). A
numerical calculation of the travelling wave solution of equation (20) is illustrated in
figure 2, when v = 0.005. The concentration a exhibits a slow exponential decay to
its final value of unity over a region with length of O(v™!), as indicated by equation
(22a). The predicted rapid exponential decay of g, is also clearly visible. The
travelling wave solutions with D <1 and » € 1, shown in figure 1, display similar
features.

D> 1. Equation (16) does not have any obvious leading order balance when
D > 1. However, since a travelling wave solution exists only for v > 24/D, this
suggests scaling both » and z with 4/D. A further consideration of equation (16)
shows that w must be scaled with D™%. We define appropriate scaled variables by

A

VD =wv, 2v/D=2z d=a p=p, w=wyD, (23)

where &, ﬁA’, @ and @ are O(1) as D —00. In terms of these new variables, equation (16)
becomes ) ) )
D_ICZé‘:ﬁ(l—aA—l[)))—w, ﬂZA:ﬁ), 7;05=—(OAC,[))+?3HA)) (24:@, b, C)

Equation (24a) indicates that for D> 1, & changes rapidly, except where
W ~ #(1—a&—f), which forms a centre manifold for the system (24). From arbitrary
initial conditions, & adjusts rapidly to reach the centre manifold. We note that the
two equilibrium points at (0, 1, 0) and (1, 0, 0) lie in the centre manifold and thus,
at leading order, the integral path which connects these points and represents the
travelling wave solution will lie entirely in the centre manifold. To analyse the
behaviour of the travelling wave solution we put & = 9(1 —& — ) and substitute into
equation (24) to obtain, at leading order as D —co,

G;=ap/s, f,=d(1—d—p). (25a, b)

This second-order system has just two finite equilibrium points in the (&, ,[)A’) phase
plane at (1, 0) and (0, 1), and it is readily shown that there exists a unique connection
in &, # >0 between (0, 1) and (1, 0) for § > 2, consistent with Proposition 3.3. An
asymptotic approximation to this integral path is readily obtained for 4 > 1, as

A

G~ (1467, f~(1/1+e7), as F> (26)
where z =%/9. Permanent form travelling wave solutions of equation (25) are
illustrated in figure 3 for ¥ = 2 and ¢ = 5. These indicate that the asymptotic solution

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

A
A

r

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
JA
) ¥

A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

10 J. Billingham and D. J. Needham
() 1)

—

]

12 -8 —41 0 4§ 12 —40 =% 0 20 40 ¢t
2
Figure 3. Graphs of the travelling wave solutions of equation (25) when: (a) 4 = 2; (b) 4 = 5.

(26) is attained for moderate values of ¥. We can conclude that the width of the
wavefront is of O(9) and hence, for D > 1, the width of the wavefront for travelling
wave solutions of equation (16) is of O(v).

4. Cubic autocatalysis, n = 2

When »n = 2, equation (12a, b, ¢) becomes

a, = v(l—a—pf)—Dw, (27a)
p.=w, (27b)
w, = —D Y (af +vw). (27¢)

This system of equations has many features in common with the system (16). It has
just two finite equilibrium points at (0, 1, 0) and (1, 0, 0) in the («, §, w) phase space.
A solution of equation (8a, b) which satisfies condition (13a, b) is a directed integral
path of equation (27a, b, ¢) which connects the point (0, 1, 0) to (1, 0, 0). The point
(0, 1, 0) is a simple equilibrium point with a two-dimensional stable manifold and
a one-dimensional unstable manifold. The eigenvalues and associated eigenvectors
are again given by (17a, b, ¢). The only integral path which satisfies condition (13b)
and has o > 0 as z— — 00 is the unstable manifold of (0,1,0) in o > 0 which we again
label S,. However, the behaviour of the system (27) in the neighbourhood of the other
equilibrium point (1, 0, 0) is entirely different from that of the system (16) and we
now consider this behaviour in detail.

Linearization of equation (27) about the point (1, 0, 0) shows that it is a non-simple
equilibrium point with eigenvalues and associated eigenvectors given by

v, =—u, e, =(1,0,0)", (28a)
vy =—vD™t, e, =(0,—1, vD™H)T, (28b)
vy, =0, e, =(1,—1,0)". (28¢)

Hence the linearized equations do not give a classification of the local behaviour.
However, an application of the centre manifold theorem (see, for example,
Guckenheimer & Holmes 1983) shows that the equilibrium point has a unique, two-
dimensional, invariant, stable manifold, locally tangent to the plane through (1, 0, 0)
spanned by e, and e, , which we label S;, and a one-dimensional invariant, centre
manifold, locally tangent to e, . We define the equation of the surface describing the
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The development of travelling waves. 1. 11

stable manifold, S, to be w = wy(e, f). Since the surface, S, is composed of integral
paths of the system (27), w, must satisfy the partial differential equation

{’0(1 —OL—‘ﬂ) _Dws} aws/aoc_l_ws aws/aﬂ+D_l(aﬂ2+vws) =0. (29)

Also, from (28a, b) we know that wy(e, f) ~ —vD*f as a—~1, #—0. On making the
substitution wg(a, f) = —vD'B+k, f*+k, fla— 1)+ ky(x—1)% in equation (29) and
equating coefficients of («—1)%, (a—1)/ and f? we obtain k, =%v, k, =k, =0, so
that, to a higher approximation,

wy ~—vD B+ B2 /0)+O0(a—1)%, %) as a—>1, pB-0. (30)

Since equation (27) has the exact solution, f =w =0, a = 1+ ke ", where k is an
arbitrary constant, the stable manifold, S,, must contain the a-axis, and hence
wg(a, 0) = 0 for —oo < @ <oo0. Hence (30) gives a uniform representation of wy(«, )
in the neighbourhood of the point (1,0, 0) and further cubic terms need not be
calculated. To calculate the equation of the curve describing the centre manifold we
first write equation (27) in normal form as

Yiz = _v?/1_v_1(?/1_x+1)(yz+x)2, (31a)
Yoo = — (/D) yy+ vy, —x+1)(y, + )%, (316)
x,=—vy,—x+1)(y, +2)° (31¢)

where y, = a4+ D/v)w—1, y, =—(D/v)w, x = f+ (D/v)w. The equation of the
centre manifold is now readily obtained as y, ~ —2%/v?, y, ~ Dx?/v?, as x—0. In
terms of the original variables, this becomes

o= ag(l) ~ L—1= (/%) B =B(t) ~ 1+ (DEfs), w=w,(l)~—)v as (-0,
(32)
where ¢ parametrizes the one-dimensional centre manifold.

Carr’s theorem (see, for example, Guckenheimer & Holmes 1983) guarantees that
any paths in the vicinity of (1, 0, 0), except those in the stable manifold, decay
rapidly on to the centre manifold. Thus the dynamics on the centre manifold
determines the nature of the equilibrium point (1, 0, 0). From equations (2756) and
(32) we can see that on the centre manifold, close to the point (1, 0, 0), £, < 0 in both
£ >0 and g < 0. Therefore, locally, all paths which start on the side of S, which
contains the centre manifold in # > 0 enter (1, 0, 0) along the centre manifold, while
all paths which start on the other side of S are swept away from (1, 0, 0) close to the
centre manifold. All paths which enter (1, 0, 0) do so along the centre manifold,
except those which form the stable manifold, S,. Thus we have established that the
non-simple equilibrium point (1, 0, 0) has a stable nodal region on the side of S, which
contains the positive w-axis in the neighbourhood of the point (1,0, 0) and an
unstable region on the other side of §,, for each » > 0. Since the behaviour in the
neighbourhood of the point (1, 0, 0) is entirely different from that of the system (16),
we do not, in the case of cubic autocatalysis, have a result analogous to Proposition
3.1, which gives a lower bound on the possible eigenvalues, v. However, the analogue
of Proposition 3.2 still holds and we have the following sufficient condition.

Proposition 4.1. 4 wunique permanent form travelling wave solution of equation
(27a, b, ¢) exists for each v = 24/D.

Proof. This is identical to the proof of Proposition 3.1. O
However, we know that when D = 1 a permanent form travelling wave solution
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12 J. Billingham and D. J. Needham

exists for all v > v2 1) = 1/4/2, so Proposition 4.1 does not provide a good upper
bound on the minimum propagation speed. We now use a constructional method to
show that a minimum propagation speed, v¥ (D), exists for all D > 0, and we calculate
v¥(D). This shows that Proposition 4.1 does not provide a good upper bound on v} (D)
for any D > 0.

A solution of the original eigenvalue problem requires the directed integral path
which leaves (0, 1, 0) as the unstable manifold, S,, to enter (1, 0,0) in > 0, @ > 0.
To decide whether S, enters (1, 0, 0) we consider the global behaviour of the stable
manifold, S, of the equilibrium point (1, 0, 0) since this forms the boundary of the
region in which paths enter (1,0, 0). Firstly we prove the following result which
concerns the behaviour of S,,.

Proposition 4.2. When a > 0 and f # 0 then wy(o, f) > —(v/D) p.

Proof. Let the surface OR be the boundary of the region R = {(a, 8, w): a >
w < —(v/D) f}. From equation (27a), when a = 0 and

w<—(w/D)p, then a,=v—(wf+Dw) > 0.
Also from equation (276, ¢) when w = —(v/D) ff, & > 0 and f # 0, then
w,+ (v/D)p, =—af?/D < 0.

Hence, apart from the a-axis, all integral paths which intersect OR are directed into
R. Now suppose that there exists an integral path which lies in S, (other than the
integral path along the a-axis), and intersects the surface OR at least once. Let (),
o, w,) be the final point of intersection before the integral path enters the
equilibrium point (1, 0, 0). From the local behaviour of S close to (1, 0, 0) given by
(30), which shows that S, lies outside R in the neighbourhood of (1, 0, 0), this integral
path must be directed out of R at (e, 8,, w,), which leads to a contradiction. Thus
any integral path which lies in S, (with the exception of the integral path along the
a-axis) cannot intersect OR. Since S|, is entirely composed of integral paths, we deduce
that S, itself cannot intersect OR at any point away from the «-axis. The local
behaviour of S,, given by (30), then shows that S, must remain outside the region R
everywhere except along the a-axis, and the proposition is established. O
A direct consequence of this result is the following.

7

Corollary 4.3. The stable manifold, S,, of the point (1, 0, 0) is tangent to the plane
w = —(v/D) p along the a-axis, for a > 0.

We now define the closed region R by
R={a pw:0<a<l, 0<p<1, —(@/D)f<w<0} (33)
and prove the following proposition.

Proposition 4.4. The stable manifold, S,, of the point (1, 0, 0) divides the closed region
R into exactly two subregions. O

Proof. From Corollary 4.3, S, must divide R into at least two subregions. In
addition, two of these subregions must contain the segment of the a-axis in R within
their bounding surfaces. We label the closed subregion of R which lies on the side of
S, which contains the positive w-axis in the neighbourhood of the a-axis as R,, and
the closed subregion of B which lies on the side of S, which contains the negative
w-axis in the neighbourhood of the a-axis as R,. We now suppose that S, divides the
region R into more than two subregions and label one of these other closed subregions
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The development of travelling waves. 1. 13

as R,. The closed subregion E, cannot contain any segment of the a-axis in its
boundlng surface, by the deﬁnltlon of B, and R,, nor can it contain any point in the
plane w = —(v/D) 8, since within R thls forms part of the boundary surface of the
subregion R,, by proposition 4.2. Hence, the subregion R, must be bounded by S, and
at least one of the planes w =0, =0, = 1 and f = 1. From equations (27) and the
definitions of S, no integral path is directed out of the bounding surface of ;. Also,
from equation (276), f, < 0 in R, and so any integral path which strictly enters R,
must be monotone deoreasmg in /)’ as z increases, and bounded below in f. However
the region R, contains no stable equilibrium point and thus such an integral path
cannot exist, which leads to a contradiction and the result is established. [
Next we consider the line segments L, and L, which are defined by

Li={a p,0):a+p=1,a>0,>0}, L,={0,1,w): —v/D<w<0}. (34a,b)

Proposition 4.5. The eigenvalue problem (27), (13a, b) has (i) a unique solution for
each v> 0, D > 0 such that the line segment L, intersects S, at an even number of points
(counting multiplicity), (it) no solution for each v > 0, D > 0 such that the line segment
L, intersects S, at an odd number of points (counting multiplicity).

Proof. The closed region R, is bounded by §,, the planes w =0, a =0, a =1 and
possibly f = 1. Thus from equations (27) and the definition of S, no integral path is
directed out of the bounding surface of the region R,. Also, from equation (275),
£ <0in R,, so any integral path which strictly enters or lies within R, is monotone
decreasing in f as z increases and bounded below in f by the segment of the ax-axis
which lies within R. The only possibility is that such an integral path enters the
equilibrium point at (1, 0, 0). Thus any integral path which at z = 2* is strictly within
R, remains within R, for all z > z* and is asymptotic to the equilibrium point (1, 0, 0)
as z—>00.

The closed region R, is bounded by S,, the planesa = 0,0 =1, =1, w =—(@/D) S
and possibly w = 0. From equation (27) all integral paths which intersect the plane
w = — (v/D) pleave the region R,, while on the remainder of the bounding surface of R,,
no integral path leaves R, From equation (276) f, <0 in R, and so, from our
knowledge of the behaviour of the system in the neighbourhood of the equilibrium
point (1,0,0), any integral path which strictly enters R, must be monotone
decreasing in £ as zincreases and leave R, through the plane w = — (v/D) f to enter the
region R, where it remains. Hence no integral path which strictly enters the region
R, can be asymptotic to the equilibrium point (1, 0, 0) as z—00.

The eigenvalue problem (27) and (13a, b) has a unique solution if and only if the
unstable manifold, S, of the point (0, 1, 0) enters the equilibrium point at (1, 0, 0).
From (17¢), S, enters the region R and hence must either strictly enter the subregion
R, or strictly enter the subregion R,, or lie in the stable manifold, S, of (1, 0, 0)
which forms the common boundary of the subregions £, and R,. If §; strictly enters
the subregion R, or lies in S, then S, is asymptotic to the point (1, 0, 0) as z o0, with
0<a<1l and 0<pf<1 for all —o0 <z<oo, and thus represents the unique
solution to the eigenvalue problem. If S, strictly enters the subregion R, then it
cannot be asymptotic to the point (1, 0, O) as z—00 and no solution of the elgenvalue
problem exists. If the equilibrium point (0, 1, 0) lies in the stable manifold, S, of
(1,0, 0) then S, lies in S,, since §; must also be the unique, invariant, unstable
manifold of (O, 1,0) with respect to the dynamics on S,. Hence if the point
(0, 1, 0) lies in R, then S, strictly enters R, if (0, 1, 0) lies in §, then S, lies in .S, and
if (0, 1, 0) lies in R, then S, strictly enters R,. However, by Proposition 4.4, if the
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14 J. Billingham and D. J. Needham

point (0, 1, 0) lies in R, then L, must intersect S, at an even number of points and
if (0, 1, 0) lies in the interior of R, then L, must intersect S, at an odd number of
points and the result is established. O

To study the behaviour of S, and determine the eigenvalues of the problem (27)
and (13, b) we define the function g(v, D) to have the value § when S, intersects the
line segment L, at the point (1 — /3, £,0) and to be 1 — (D /v) @ when S, intersects the line
segment L, at the point (0, 1,@). We note that .S, must intersect L, U L, at least once
by proposition 4.2 and that g(v, D) may be multivalued. However, since the right-
hand sides of equation (27) are well-behaved functions of the parameters v and D as
well as a, # and w, the solution depends continuously on » and D (see, for example,
Hirsch & Smale 1974), and hence g(v, D) is a continuous function in v > 0, D > 0. We
now determine the behaviour of S, given by w = wy(a, ), as f increases from zero,
and hence determine g(v, D). From corollary 4.3 we know that w, ~ — (v/D) fas f—0*.
This suggests that a convenient rescaling of the variable w, can be made by defining
a=a&, f=p, w= (v/D)®. In terms of these new varlables equation (29) becomes

5 0w, o D _;
(g s g s o Do
D(1—a—p—w,) % + Y +ws+vz<x[)’ 0 (35)
We also have that D&, f) ~—p, as 0% (36)

We now consider the asymptotic forms of %4(&, /;) and hence g(v, D), when v > 1 and
0<wv <1, with D of O(1).

v > 1. With v > 1, equation (35) suggest that we seek an asymptotic expansion of
W in the form W4 (&, f) = w,(&, f) +v 20, (&, B)+.... At leading order, equation (35)
becomes . .

D(0,/0&) (1 —&— f —1,) + (0l /Of) Wy + W, = 0. (37)

This equation has the solution @, = — 4, which satisfies the condition (36) as §—>0*.
In terms of the original variables we have that wg(a, f) = — (v/D) f+O0(w™), as v >00.
Hence, as v->00, S, asymptotes to the plane w = — (v/D) f and does not intersect the
line segment 1.;. Thus we obtain case (i) of Proposition 4.5 and a unique solution of
the eigenvalue problem exists for v > 1. This result is consistent with Proposition 4.1.
We also note that g(v, D)2, as v 00, and is singled-valued.

0 <v < 1. In this case a balance of terms is not obtained in equation (35) as
v—0". This suggests that a rescaling is required. Condition (36) indicates that
the rescaling of @ and § should be of the same order. The approprlate scaled

variables which give a leading order balance are then found to be & = & /)’ (v*/D) /)’

W, = (vV?/D) . In terms of these new variables, equation (35) and condltlon (36)
become B " A

D{1 =& — (v?/D) (f +1b)} 0thy/ 06 + g Oab /O + s+ af* = 0, (38)

g ~—/§, as /);»0*. (39)

With 0 <» < 1 equation (38) suggests that we seek an asymptotic expansion of 1
in the form (&, f) = (&, f) + v, (&, )+ ..., as v—0*. At leading order, equation
(38) becomes . 3

D(1—36) b, /08 + 1, 01by /OB + by + &5% = 0. (40)

This equation has no obvious solution which satisfies condition (39). However, in
terms of the scaled variables, the plane a4+ = 1 becomes &+ (v*/D) /ﬁ’ =1 and, at
leading order in v*,& =1. Hence to determine the leading order form of the
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The development of travelling waves. 1. 15
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Figure 4. A graph of the function @?;i(ﬁ;), the curve of intersection of the stable manifold,
8,, with the plane & = 1.

intersection of the manifold S, with the plane e+ =1, given by @& = @Z)i(,é), we set
& =1 in equation (40) to obtain

&y /A = — 1 — 2 /iy, (41)
A numerical integration of equation (41) using a fourth-order Runge—Kutta method
with initial conditions #; = —107%, # = 107%, shows that &, crosses the f-axis at

[)A’ = f* ~ 0.859 and that ;>0 as ,6A’—>—oo. A graph of ﬁ)i(/;’) is shown in figure 4.
Hence, as v — 07, S, intersects the line segment L, at only one point. Thus we obtain
case (ii) of proposition 4.5 and the eigenvalue problem has no solution for 0 <v < 1.
We also note that g(v, D) ~ f*v*/D, as v—0*, and is single-valued.

v = 0(I). Between its asymptotic forms for »> 1 and 0 <v <1, we compute
g(v, D) numerically. By integrating equation (27) from z = 0 to z = z, for sufficiently
large, positive z,, with initial conditions («(0), #(0), w(0)) €L, U L,, it is possible to
determine whether the point («(0), £(0), w(0)) lies in the region R, or the region I,,
since integral paths that enter the region R, asymptote to the point (1, 0, 0), while
integral paths that enter the region R, leave R, through the plane w = —(v/D) 8. By
performing this integration for a range of initial conditions on L, U L, for fixed v and
D, the points of intersection of S, with L, U L, are easily identified since they lie on
the common boundary of R, and R,, and hence g(v, D) can be calculated. However,
this method of calculating g(v, D) is computationally very inefficient, since a large
number of numerical integrations of equation (27) must be performed for each pair
of values of v and D. Calculations of g(v, D) obtained by this method indicate that,
for fixed D, g(v,D) has a single-valued inverse. We can therefore calculate g(v, D)
precisely and in a computationally efficient manner by fixing D and for each of a
range of points lying in L, U L, using a bisection search technique to locate the
unique value of » for which this point lies in S,. Graphs of g(v, D) against v obtained
in this way are shown in figure 5 for a range of fixed values of D. In each of these
graphs, ¢g(v,D) -0 as v— 0" and g(v, D) -2 as v —>00, consistent with the asymptotic
forms obtained for » > 1 and v < 1. For each D > 1, g(v, D) is monotone increasing
with », while for each 0 <D < 1, g(v, D) has a single folded region where g(v, D) is
triple valued. Thus, for each D > 1, S, always intersects L, U L, at a unique point,
while for each 0 < D < 1, S, meets L, U L, at three points for a range of values of v.
However, S, never intersects L, at more than two points. These numerical results
complete our constructional proof of the following proposition, which is a
consequence of Proposition 4.5.
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Figure 5. Graphs of the function g(v, D) against », when: (a) D = 0.01; (b) D =0.1;
(¢) D =1: (d) D = 100.

0 10 20 30 40 50
D
Figure 6. A graph of the minimum propagation speed, v¥(D), shown as the solid line. The
broken line is the upper bound on v#(D), given by Proposition 4.1.

Proposition 4.6. The eigenvalue problem (27) and (13a, b) has a unique solution if
and only if v = v¥(D), where v¥ (D) is the unique, positive solution of g(v, D) = 1 for each
D > 0.

A graph of v¥(D) against D, as calculated by the above numerical procedure, is
shown in figure 6, which indicates that v¥(D) is of O(D) for D < 1, and v (D) is of
O(v/D) for D > 1. The graph also shows the upper bound on v¥, given by proposition
4.1. Some typical travelling wave solutions of equation (27a, b, ¢) are illustrated in
figure 7. These were obtained numerically by the method used in §3 for the case of
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Figure 7. Graphs of the travelling wave solutions of equation (27), when: (a) D = 0.001,
v=2oF ~x0.00122; (b)) D =0.001,v =5v¥; (¢) D =1,v =0} = /L, (d) D =1, v = 5v¥; (¢) D = 1000,
v =0F ~ 27.28857; (f) D = 1000, v = 5vf.

quadratic autocatalysis, n = 1. The solutions show that the wavefront width increases
with both v and D, and that the wavefront becomes more asymmetric as D — 0, with
f decaying more rapidly than « as z—>00, as in the quadratic case. However, there
is now an obvious difference in the rate of decay of 1 —a and g as z—>00 between the
minimum speed travelling wave solutions and the faster travelling wave solutions.
This important difference will be examined in §5, but first we complete our analysis
of equation (27) by studying the asymptotic behaviour of the permanent form
travelling wave solution for 0 <D <1 and D > 1.

D < 1. Equation (27¢) indicates that for D €1 and » > D, w changes rapidly
except where w ~ af?/v. However, our numerical results suggests that v§ = O(D) for
D < 1, so it is not helpful to construct a centre manifold in this case. Expressions
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18 J. Billingham and D. J. Needham
(17¢) indicate that o = ), B=0(1), w=0(1) as z—>—00, when v = O(D) and

A, J?, ~W= (1) at least as z—>—o00. We deﬁne reglon I to be that in wh1ch
B, W= 0(1). At leading order in D, equations (27a, b, ¢) become

A, =5(1—B)—W, B,=W, W,=—sW-AB> (42a, b, ¢)

We analyse this system in the (4, B, W) phase space. The system has a unique finite
equilibrium point at (0, 1, 0), with a two-dimensional stable manifold and a one-
dimensional unstable mamfold The only integral path which satisfies condition (135)
as z —— o0 is the unstable manifold of the point (0,1,0) in 4 > 0. The system also has
a solution 4 = #z+const., B = W = 0, which is represented by the A-axis. We note
that, for fixed 4, equation (426, ¢) is identical to the leading order form of equation
(15a, b) when |ﬂ| < 1. Equation (15a, b) was analysed in Billingham & Needham
(1990), where it was shown that the point §f = w = 0 is a saddle-node with a saddle
region and a nodal region separated by a stable manifold. Integral paths that enter
the nodal region or the stable manifold asymptote to the equilibrium point, while
integral paths that enter the saddle region are swept away from the equilibrium point
into the region g < 0. These results indicate that, for the present system (42), the
unstable manifold of the point (0, 1, 0) may enter either a ‘nodal’ region of the
A-axis, to which it will then become asymptotic, or a ‘saddle’ region of the A-axis,
when it will be swept away into the region B < 0 and not represent a solution of the
eigenvalue problem. Numerical integrations of equation (42) using a fourth-order
Runge-Kutta method, with initial conditions lying on the unstable manifold of
(0, 1, 0) show that, for ¥ < 7* =~ 1.219, B becomes negative and no solution of the
eigenvalue problem exists. However, for ¢ > ¢*, the unstable manifold of the point
(0, 1, 0) becomes asymptotic to the A~—axis. From our knowledge of the solutions of
equation (15a, b) and the behaviour of the full system of equations (27a, b, ¢) we
deduce that for # > ¢*, the unstable manifold of the point (0, 1, 0) strictly enters the
‘nodal’ region of the A-axis, while when # = #* the unstable manifold of the point
(0, 1, 0) lies in the ‘stable manifold’ of the A-axis. From equation (42a, b, ¢) we can
deduce the following two types of asymptotic behaviour as z—00.
For
F>0% A~z B~2/22 W~—4/2 (43a)

=0 A~dz, B~e® W~—3c as z->00. (43b)

Since a@ = DA ~ Dz as z->00, the approximation becomes non-uniform when
z=0(D™) in both cases. Thus we need to introduce a new region with z> 1 to
complete the solution. When & > &%, 4 = O(D™), B = 0(D?), W = O(D?) as z->00,
which suggests that we introduce the scaled variables ¢ = Dz, A=DA, B=D"B,
W= D3W. We define region II to be that in which 4,B, W = 0(1). On writing
equation (27) in terms of the new variables, the leading order solution in region 1T,
which matches with the solution in regi()n I, is readily obtained as

A=1—¢", P50 —e " — 1)1 (44a,b)
W =—#(1 —0“50)(?7(9+0‘W— 1)—2. (44¢)

Although B-—>0 and W >0, and both are uniform approximations as -0, a
calculation of further terms shows that a non-uniformity arises in the asymptotic
expansion of 4 at O(D?) as @ >co. This is due to a term of O(D*5/0) which is larger
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The development of travelling waves. 1. 19

than terms of O(e~%) for sufficiently large 6. Thus a third region with 6 > 1, which
we label region IIa, is required to complete the asymptotic solution for a. In region
ITa we simply find that a =4 ~ 1—(D*/0)+ ..., as >0, and a—>1 as >0
through algebralcally small terms in §. When & = ¢*, the leadmg order approximation
for B and W glven by (43b) remain uniform as z—oc0, while rcglon II is again required
for A. However, in this case, approximation (44@) remains uniform as 6->00 and
region Ila is not required. We have now constructed an asymptotic solution of the
eigenvalue problem which exists for all ¥ > ¢*, and hence v¥(D) ~ #*D, as D —~0".
This result is consistent with the numerically. calculated values of v¥(D) plotted in
figure 6.

The permanent form travelling wave solutions of the full system (27) with
D = 0.001, shown in figure 7(a, b), display some of the features of the asymptotic
solution for 0 < D < 1. The concentration, a, exhibits a slow exponential decay to
unity given by (44a). In figure 7b, where v > v¥, the predicted algebraic decay in
region Ila cannot be seen, since this region begins only when z > D! = 1000. The
concentration S, given by (43), exhibits rapid exponential decay in figure 7a, where
v = v¥, and slower algebraic decay in figure 7b, where v > v¥.

D > 1. Our numerical calculation of v}(D) suggests that vF(D) is of O(v/D) for
D > 1, so that it is again convenient to use the scaled variables (23) in terms of
which equation (27) becomes .

DG, =1 —d—p)—b, fy=1b, b, =— (G +b). (45a, b, c)

Equation (45a) indicates that, for D> 1, & changes rapidly, except where
W~ B(1—d&—pB) which forms a centre manifold for the system (45).The two equi-
librium points at (0, 1, 0) and (1, 0, 0) lie in the centre manifold and thus, at leading
order, the integral path which connects these two points and represents the travelling
wave solution lies entirely within the centre manifold. To analyse the behaviour of
the travelling wave solution we put @ = #(1 —&— /) and substitute into equations
(45) to obtain, at leading order, as D —>o0,

Gy =4&2)0, f;=d(1—d—p). (464, b)
This second-order system has just two finite equilibrium points in the (&, ,é) phase
plane at (1, 0) and (0, 1). The point (0, 1) is a saddle and the only integral path which
satisfies condition (13b) as £—>— o0 is the unstable manifold of (0, 1) in & > 0, which
we label S,. The point (1, 0) is a saddle-node and we label its stable manifold §,. We
thus seek condltlons under which 8, enters the saddle-node at (1, 0). This may be

achieved by considering the functlon G (®). In the (4, ,6’ phase plane the projections
of line segments L, and L, on to the centre manifold % = v(l —a— ,[)’ are

Lo={@&pf):é+f=1,4>0 >0} L,={d1):0<d <1} (47, b)
Thus if S, intersects the line segment L, at the point (1— /);, /);) then ¢, (%) /)’ while
if 8, intersects the line segment L, at thc point (&, 1), then g (¥) = 1+&. We now

state two lemmas which concern thc function ¢ (7).
Lemma 4.7. The function g.(0) is single-valued for © > 0.
Lemma 4.8. The function g, (0) is monotone increasing for © > 0.

The proofs of these two lemmas are straightforward, following the ideas in
Billingham & Needham (1990), and will not be given here.
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Figure 8. A graph of the function g (%).

(b) atp

1.0
0.8
4
0.6
0.4

0.2

40 —20 0 20 40

Figure 9. Graphs of the travelling wave solutions of equation (46), when:
(@) % = % ~ 0.862; (b) § = 5.

Our analysis of the function g(v, D) shows that g (6)—0 as ©—>0%, and g (5) 2
as ©—>00. Together with Proposition 4.5 and Lemmas 4.7 and 4.8, this leads to the
following result.

Proposition 4.9. A unique, permanent form, travelling wave solution of equations
(460, b) exists if and only if © = 0%, where ©* is the single, positive solution of
Goo(B) = 1.

A graph of g (9) against ¢ is illustrated in figure 8. This graph was obtained by
using a fourth-order Runge-Kutta method to numerically integrate equations
(46a, b) with Z decreasing and initial conditions & = 1, # = 1075, The integration was
continued into the region £ > 0 until the point (&, /) crossed either of the line
segments L, and L, after which g, (#) was calculated accordingly. A refined numerical
integration gives 9* &~ 0.862. We have now shown that v}(D) ~ #*y/D as D-—>c0.
Finally, we obtain an asymptotic solution of equation (46a, b) as ¢->00. Once again
it is convenient to make the change of variable, Z = Z/4. The leading order form of
equation (46a, b) can then be integrated directly to obtain the implicit solution
which satisfies (13a, b)

ln( %o >+ 1A =z, ln<1;ﬂ°>+é=2, (48)

1—é, )

where &(z) = &,(z)+ 0(57?), ,é(i) = /)30(2)+0(13‘2). Permanent form travelling wave
solutions of equations (46) are illustrated in figure 9, for 4 = ¥*, and ¢ = 5. These
indicate that the asymptotic solution given implicitly by (48) is attained for
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The development of travelling waves. I. 21

moderate values of 4. Once more we can conclude that the width of the wavefront is
of O(%) and hence, for D > 1, the width of the wavefront of permanent form travelling
wave solutions of equation (27) is of O(v).

5. Asymptotic properties of the permanent form travelling wave solution

For a given v = v¥(D), under both quadratic and cubic autocatalysis, the solution
of the eigenvalue problem (12) and (13a, b) leaves the unstable equilibrium point
(0, 1, 0) along the unstable manifold, S;. From expression (17¢),

a(z) ~ A(DAy+v)eb%,  B(z) ~ 1—eM?, as z—>— 0. (49)

Thus in both cases (rn = 1, 2), the concentrations o and £ decay exponentially to their
final values of zero and unity, respectively, as z—>—c0.

For quadratic autocatalysis, n = 1, the solution of the ecigenvalue problem enters
the stable node at (1, 0, 0). By linearizing equation (16) about the point (1, 0, 0), the
asymptotic behaviour of the solution as z—>c0 is readily determined. We find that
this depends upon the eigenvalues u,, 4, and p, of the equilibrium point(1, 0, 0) given
by (18a, b, ¢). However, the important feature is that « and £ decay exponentially
to their final values of unity and zero, respectively, as z—>o0, for allv > vf(D) = 24/D.

For cubic autocatalysis n = 2, the solution of the eigenvalue problem enters the
saddle-node at the point (1, 0, 0) as z—>00. We have shown in §4 that, for v = v} (D),
the integral path which represents the solution of the eigenvalue problem lies in the
stable manifold of the point (1, 0, 0), while, for v > v¥(D), this integral path enters
the point (1, 0, 0) along the centre manifold. From the equations (30) and (32) of
the stable manifold and centre manifold, respectively, the following asymptotic
behaviour can be deduced :

v>0v¥D), a~1—v/z, p~uv/z 1
J

50
v=0¥D), a~1—e" pf~e %P as z->0. (60)

Hence the concentrations o and f# decay exponentially to their final values of unity
and zero, respectively, in the minimum speed travelling wave solution, but only
decay algebraically in all faster travelling wave solutions, as z-—>0c0.

6. Discussion

In this paper we have established that a minimum propagation speed, v}(D), exists
for permanent form travelling wave solutions of equation (6a,b) under both
quadratic autocatalysis, n = 1, and cubic autocatalysis, » = 2. Each one of these
solutions represents a travelling wave which could develop from the initial value
problem (6) and (7) in the long time. In the case of quadratic autocatalysis with equal
diffusion rates, D = 1, it has been shown by Larson (1978) that the travelling wave
which develops in the long time depends upon the behaviour of the initial
concentration of the autocatalyst, f(z,0), as  —>c0. In a later paper it will be shown
that this conclusion extends to the case D > 0. In particular, we find that

Blx,0) < Ae VP, as x>0 =v=0vf=2yD,
B,0)~Ae* 0<o<l1/y/D, as x—>00=v=Do+o'>f, (51)
B(x,0)>e % VYo>0, as x->00=>no travelling wave develops,
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22 J. Billingham and D. J. Needham

where A4 is an arbitrary constant. Thus from localized initial conditions (i.e. f(x,0)
has compact support), the minimum speed wave will always develop. However, for
initial conditions with linear exponential decay the speed of the travelling wave
depends upon the size of the exponent, while for initial conditions which decay more
slowly than any linear exponential no travelling wave will develop in the long time.
Thus the minimum speed wave is structurally unstable to any disturbance which
decays more slowly than e */V? as x —00.

However, in the case of cubic autocatalysis there is a fundamental difference. Only
the minimum speed wave has exponential decay of f as z—>o00, all faster waves
having weaker algebraic decay as z—oc0. This suggests that the faster travelling
waves may be generated by initial conditions with decay of O(1/x) as x>0, a
situation which does not lead to a travelling wave in the quadratic case. This
possibility is being considered by one of the authors at present and we tentatively
conjecture the following version of (51) for the cubic case:

L(x,0) < ovf/x, as x—00=v=0f
px,0)~0o/x, o>v¥ as x—>0w=v=o0, (52)
Bx,0) = 0o/x, Yo>0, as xz->00=>no travelling wave develops.

This suggests that the minimum speed wave will be structurally unstable only to
disturbances that decay more slowly than v} /x as =00, making it more robust than
that of the quadratic case. These results indicate that, in a chemical system for which
quadratic or cubic autocatalysis is a good model, it may be possible to observe
wavefronts which propagate with higher speeds than the minimum if the initial
concentration of B does not decay too rapidly away from the initial reaction zone.
However, these faster wavefronts are more likely to be observed in quadratic
autocatalytic systems since an initial concentration of the autocatalyst with
exponential decay will be easier to achieve, in practice, than the slower algebraic
decay needed to generate a fast wave in cubic autocatalysis. In particular, when
the autocatalyst, B, diffuses at a much slower rate than the reactant, 4, so that
0 <D <1, (51) shows that even a rapid exponential decay of B as x 00 can lead to
a wave which propagates faster than the minimum speed.

When the autocatalyst, B, is immobilized, so that D = 0, the minimum propagation
speed is zero under both quadratic and cubic autocatalysis. This suggests that initial
concentrations, f(x,0), with compact support will not generate travelling waves in
the initial value problem (6) and (7). This is reasonable, on physical grounds, since
if B is initially localized in the region |z| < A, say, then it cannot diffuse out of this
region and thus no wavefront can propagate away. The initial value problem with
D =0 and the implications for the case 0 <D < 1 are currently being studied by
one of the authors.

Since localized initial concentrations of B produce travelling waves which
propagate at the minimum speed, it is of interest to consider the form of v¥(D).
Firstly we note that v¥(D) < v¥(D) for D > 0, so that the minimum speed wave
propagates more slowly under cubic autocatalysis than under quadratic auto-
catalysis. We can explain this by considering the rate of reaction ahead of the front
in both cases. The reaction rate is of O(af) under quadratic autocatalysis and of
O(af?) under cubic autocatalysis, so that the reaction generally proceeds more slowly
ahead of the wavefront, where 0 < # < 1, in cubic autocatalysis than in quadratic
autocatalysis. This means that the autocatalyst, B, is produced more slowly and thus

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

/\
A

' \

e ol

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
' \

y 9

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

The development of travelling waves. 1. 23

the wave cannot propagate as rapidly under cubic autocatalysis. Now consider
the dimensional form of the minimum propagation speed, v¥(D). Although we do
not have an analytical expression for v¥(D), we can deduce from the asymptotic
expressions obtains in §4 that the dimensional minimum propagation speed, V¥,
satisfies

VED 4, Dy, by, ay) ~ 5*Dy(kya2/D,)?, when Dy <D, (53a)

V¥, Dy, ky, ay) ~ 0Dy kyal)t, when Dy > D,. (53b)

Thus, when Dy > D,, the rate of diffusion of the reactant, 4, does not influence the
minimum propagation speed at leading order. In general, when D, and Dy are of the
same order, both diffusion rates influence the minimum propagation speed. From
Proposition 3.3, the dimensional minimum propagation speed, V¥, for quadratic
autocatalysis is

ViDy, Dy, by, ay) = 2(Dy ky %)%, (54)

which is independent of D ,. This is an unexpected result which is hard to account for
on physical grounds. Note that although D, does not influence the minimum
propagation speed, it still determines the form of the minimum speed travelling wave
solution via the parameter D.

Further insight can be gained by studying the permanent form travelling wave
solutions of equation (12a, b, ¢) for n > 0. A preliminary numerical investigation
for various n > 1 suggests that a minimum propagation speed exists with v¥—>0
asn—>00, v¥(D) = O(v/D)for D » 1 and v¥(D) ~ k(n)D for 0 < D < 1, where k(n) o0
as n—1*. It is also easy to see that Propositions 2.1 and 2.4 still hold and that
v¥(D) < 24/D. The permanent form travelling wave solutions have a similar form to
those studied here for n = 2. However, when 0 < < 1, the behaviour of the system
of equation (12) is very different. Indeed, it is not clear that travelling wave solutions
will exist with 0 < n < 1. Equation (12a, b, ¢) have proved much harder to integrate
numerically when 0 <n <1 which supports our non-existence conjecture. These
preliminary results indicate that n =1 is a bifurcation point of the system of
equation (12). We note that when the reaction scheme 4 +nB — (n 4 1) B was studied
in a well-stirred open system by D’Anna et al. (1986) it was found that, in the context
of singularity theory, the behaviour of the system is equivalent for all » > 1 and that
this behaviour changes dramatically when n = 1. This is in line with the behaviour
of the system studied in this paper for n > 1.
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